Svnthesis and Multinuclear NMR **Characterization of Iminophosphoranyl** Phosphines and Silanes

Stéphanie Goumri, Francis Lacassin, Antoine Baceiredo, and Guy Bertrand*

Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cédex, *France*

Received 26 February 1996; revised 16 April 1996

ABSTRACT

Tris (iminotripheny1phosphoranyl)phosphonium chloride 2, tris(iminorriphenylphosphorany1)phosphine 3, bis(iminotriphenylphosphorany1)dichlorosilane **4,** *tris(iminotriphen.ylphosphorany1)-chlorosilane 5 and -hydrogenosilane 6 have been prepared by reacting the iminotriphenylphosphorane* **1** *with trichbrophosphine or the corresponding chlorosilanes. A multinuclear NMR study of these compounds is presented. 0 1996 John Wiley* & *Sons, Inc.*

INTRODUCTION

The electron-releasing properties of the **R,PN-** ligand readily explain that the phosphazene base $(P_4$ tBu) A is one of the strongest non-ionic bases known $[1]$, and thus it was of interest to prepare the corresponding phosphine, which could well exhibit a similar basicity **[2].** Moreover, phosphorane iminato ligands have been used to stabilize metals in high oxidation states **[3]** and allowed Dehnicke et al. to isolate a dication of hexavalent sulfur **B** [4]. There-

Dedicated to Professor Louis D. Quin on the occasion of his retirement from the University of Massachusetts at Amherst.

fore, it seemed clear that low coordinate main group species such as silylenes *[5]* and silicenium cations [6] should be stabilized by the R_3 PN⁻ ligand, as shown by the resonance structures **C** and **D** (Scheme 1). Here we report the synthesis of the tris(imino-

SCHEME 1

$$
6\text{Ph}_3\text{P}=\text{N-H } + \text{PCI}_3 \xrightarrow{\text{CH}_2\text{Cl}_2} (\text{Ph}_3\text{P}=\text{N})_3\text{P-H, CT}
$$

1\n
$$
1 \qquad \qquad 1
$$
\n(90%)

 $\frac{+2 \text{ (Me}_3 \text{Si})_2 \text{N}^2 \cdot \text{Na}^+}{2}$ $(\text{Ph}_3 \text{P=N})_3 \text{P}$ 3

SCHEME 2

^{*}To **whom correspondence should be addressed.**

FIGURE 1 2D NMR 31P-31P GE-COSYDQF{IH} experiment for compound 2.

SCHEME 3

triphenylphosphorany1)phosphine 3 [7] and of the silylene and silicenium precursors 4, *5,* and **6.** In all cases, heteronuclear NMR spectroscopy appeared to be the most powerful tool for characterization [S].

No clean reaction was observed by treating the silylated phosphorane imine R,PNSiMe, [9] with phosphorus trichloride. However, six equivalents of 1 reacted at room temperature with a dichloromethane solution of PC1, affording **2** as a white powder (Scheme 2). The **31P** NMR spectrum showed a singlet at +12.1 and a doublet at -13.0 *(* V_{PH} *= 582 Hz)*, suggesting the formation of a phosphonium salt fea-

turing a PH bond; however, no PP coupling constant was observable. Thanks to a 2D NMR 31P-31P **GE-**COSYDQF [¹H] experiment, it appeared that a $^{2}J_{\text{pp}}$ coupling constant smaller than *0.5* Hz did exist (Figure 1). Therefore, we could conclude that **2** was the **tris(iminotriphenylphosphorany1)phosphonium** salt (90% yield), which was confirmed by mass spectroscopy. The presence of a phosphonium unit demonstrates that the corresponding phosphine **3** is more basic than phosphazene 1! Indeed, deprotonation of **2** only occurred in the presence of a very strong base, such as sodium bis(trimethylsily1)amide. The structure of **3** (a highly water- and oxygen-sensitive material) was clear from **31P** NMR spectroscopy $(+104.4, q, \frac{2J_{PP}}{P} = 87.9 \text{ Hz}; +7.5, d, \frac{2J_{PP}}{P} = 87.9 \text{ Hz}.$

Four equivalents of **1** reacted at room temperature with tetrachlorosilane in dichloromethane affording the desired dichlorosilane 4 in 85% isolated yield. In the same way, using six equivalents of 1 with tetrachlorosilane and trichlorosilane, tris(imino**triphenylphosphorany1)chlorosilane** *5* and -hydrogenosilane **6** were obtained in 83% and 86% yield, respectively, as white powders (Scheme **3).**

The characterization of these three products 4- *6* is a nice illustration of the use of heteronuclear

FIGURE 2 31P NMR spectra of compounds (a) **4** and **(b) 5,** showing coupling constants **2Jps,.** 31P-29Si{1H} INEPT NMR spectra **of** compounds **(c) 4** and (d) **5.**

NMR spectroscopy. To differentiate between the diand tri-substituted chlorosilanes **4** and *5,* 'H and **13C** NMR are useless. The 31P NMR chemical shifts are very close **(4:** + **4.3; 5:** + **0.3);** however, the phosphorus-silicon coupling constants can be measured (4: 40 Hz; **5: 34 HZ)** (Figures 2a and 2b). Starting from these values, the $31P-29Si[1H]$ INEPT NMR spectra can be recorded (Figures 2c and 2d), and give the definitive proof for the structure. Note that in the case of 4, the two pics centered at -62.8 are separated by 80 Hz, which is double the value of the ${}^{2}J_{\text{PSi}}$ coupling constant, demonstrating that the signal is a triplet and, thus, the presence of two phosphazene units.

The structure of hydrogenosilane **6** can be deduced from the ¹H NMR spectrum that features a quartet centered at 5.4 (J_{PH} = 7.7 Hz); moreover, the presence of satellites allows for the determination of the value of the V_{SiH} coupling constant (218 Hz) (Figure 3a). The 1H-29Si INEPT spectrum appears as a doublet of quartets centered at -64.9 (Figure 3b). Of particular importance is the infrared stretching

FIGURE 3 (a) Details of ¹H NMR spectrum of compound 6, showing the coupling constants J_{SH} and J_{PH} . (b) ¹H-²⁹Si IN-**EPT NMR spectrum of compound 6.**

frequency of the Si-H group at 1975 cm⁻¹, which is out of the usual range and implies a considerable lengthening of the SiH bond.

Attempts to generate the corresponding silylene from 4 and silicenium cation from 5 and 6 are under active investigation.

EXPERIMENTAL

All experiments were performed under an atmosphere of dry argon or nitrogen. Melting points were obtained on an Electrothermal capillary apparatus and were not corrected. 1H , ^{31}P , and ^{29}Si NMR spectra were recorded on a Bruker AMX4OO spectrometer. 'H and 29Si chemical shifts are reported in ppm relative to Me,Si as external standard. 31P downfield shifts are expressed with a positive sign, in ppm, relative to external 85% H₃PO₄. Infrared spectra were recorded on a Perkin-Elmer 1725X. Mass spectra were obtained on a Ribermag R10 10E instrument. Conventional glassware was used.

General Procedure. To a room temperature dichloromethane solution (15 mL) of phosphazene **1** (1.66 g, 6 mmol) was added the corresponding amount of PCl₃ (1 mmol), SiCl₄ (1 or 1.5 mmol), or HSiCl, (1 mmol). After stirring of the reaction mixture for 2 hours at room temperature, the phosphonium salts were eliminated by filtration. Evaporation of the solvent in vacuo afforded compounds 2, **4,5,** and 6 as white powders, which were purified by washing with toluene (2×5 mL).

Tris(iminotriphenylphosphorany1)phosphonium Chloride 2. Yield 90%, mp 49-50°C; 31P NMR (CD_2Cl_2) δ = +12.1 (s br, Ph-P), -13.0 (d, ¹J_{PH} = 582.0 Hz, P-H); CIMS *m/z* 860 (M+ - C1-). Anal. calcd for $C_{54}H_{46}N_{3}P_{4}Cl$ (896.33): C, 72.35; H, 5.17; N, 4.69. Found: C, 72.40; H, 5.21; N, 4.72.

Bis (iminotriphenylphosphoranyl *)dichbrosilane* 4. Yield 85%, mp 215°C (dec); $^{31}P(^{1}H)NMR (CDCl₃)$ $\delta = +4.3$ (s); ³¹P $-$ ²⁹Si^{[1}H] INEPT NMR (CDCl₃) δ $= -62.8$ (t, $\frac{2J_{\text{PSi}}}{4} = 40.0$ Hz); CIMS *m/z* 651 (M⁺ + 1). Anal. calcd for $C_{36}H_{30}N_2SiP_2Cl_2$ (651.58): C, 66.36; H, 4.64; N, 4.30. Found: C, 66.30; H, 4.58; N, 4.35.

Tris(iminotriphenylphosphorany1)chlorosilane

5. Yield 83%, mp 226°C (dec); 31P ('HI NMR (CD_2Cl_2) δ = +0.3 (s); ³¹P - ²⁹Si^{[1}H] INEPT NMR (CD_zC_z) $\delta = -64.6$ (q, $\delta J_{\text{psi}} = 34.0$ Hz); CIMS m/z 892 (M^+ + 1). Anal. calcd for $C_{54}H_{45}N_3SiP_3Cl$ (892.43): C, 72.67; H, 5.08; N, 4.71. Found: C, 72.78; H, 5.18; N, 4.62.

Tris(iminotriphenylphosphorany1)silane 6. Yield 86%, mp > 300°C; ³¹P[¹H] NMR (CD₂Cl₂) δ = +0.0 (s); ¹H-²⁹Si INEPT NMR (CD₂Cl₂) δ = -64.9 (dq, ²J_{PSi} = 26.2 Hz); ¹H NMR (CD₂Cl₂) δ = 5.4 (q, μ_{PH} = 7.7 Hz, $V_{\text{SiH}} = 218.0$ Hz, Si-H), 7.0 (m, aromatic H); IR (CH₂Cl₂): $v = 1975$ cm⁻¹ (Si-H). Anal. calcd for $C_{54}H_{46}N_3SiP_3$ (857.99): C, 75.59; H, 5.40; N, 4.90. Found: C, 75.48; H, 5.32; N, 4.65.

Synthesis of Tris(iminotriphenylphosphorany1) phosphine **3.** To a room temperature benzene *so-* lution (10 mL) **of** phosphonium salt **2 (0.73 g, 0.81** mmol) was added a suspension **of** sodium bis(trimethylsily1)amide **(0.30 g, 1.63** mmol) in benzene (5 mL). The reaction was monitored by **31P NMR** spectroscopy and was complete after **30** minutes at room temperature. Due to its extreme sensitivity, compound **3** could only be characterized in solution: ³¹**P**[¹H] NMR (C_6H_6) $\delta = +7.5$ (d, $U_{\text{pp}} =$ 87.9 Hz, Ph-P), $+104.4$ (q, $^2J_{\text{pp}} = 87.9$ Hz, N₃P).

ACKNO WLEDG,IMENTS

Thanks are due to Expansia and the CNRS for financial support **of** this work.

REFERENCES

- R. Schwesinger* *Chimia, 39,* 1985, 269; *R.* Schwesinger, H. Schlemper, *Angew. Chem. Int. Ed. Engl., 26,* 1987, 1167; R. Schwesinger, K. Link, G. Tiele, H. Rotter, *Angew. Chem. Int. Ed. Engl., 30,* 1991, 1372; *R.* Schwesinger, C. Hasenfratz, H. Schlemper, L. Walz, E. M. Peters, K.. Peters, H. Schnering, *Angew. Chem.* Int. *Ed. Engl., 32,* 1993, 1361.
- **T.** L. Windus, M. W. Schmidt, M. S. Gordon, J. *Am. Chem. SOC., 116,* 1994, 11449; *C.* Lensink, S. K. Xi, L. M. Daniels, J. G. Verkade, J. *Am. Chem. SOC., 111,* 1989, 3478; M. A. H. Laramay, J. G. Verkade, J. *Am. Chem. Soc., 112, 1990, 9421.*
- K. Dehnicke, J. Strahle, *Polyhedron, 8,* 1989, 707.
- [4] H. Folkerts, W. Hiller, M. Herker, S. F. Vyboishchikov, G. Frenking, K. Dehnicke, *Angew. Chem. lnt. Ed. Engl., 34,* 1995, 1362.
- A. J. Arduengo **111,** H. Bock, H. Chen, M. Denk, D. A. Dixon, J. C. Green, W. A. Herrmann, N. L. Jones, M. Wagner, R. West, J. *Am. Chem. SOC., 116,* 1994, 6641; M. Denk, R. Lennon, R. Hayashi, R. West, A. V. Belyakov, H. P. Verne, A. Haaland, M. Wagner, N. Metzler, J. *Am. Chem. Soc., 116,* 1994,2691; B. Gehrhus, M. F. Lappert, J. Heinicke, R. Boese, D. Blaser, *J. Chem. SOC. Chem. Commun.,* 1995, 1931; P. Jutzi, U. Holtmann, D. Kanne, C. Krtiger, R. Blom, R. Gleiter, I. Hyla-Kryspin, *Chem. Ber., 122,* 1989, 1629; P. Jutzi, D. Eikenberg, A. Mohrke, B. Neumann, H. G. Stammler, *Organometallics, 15,* 1996, 753.
- C. A. Reed, Z. Xie, R. Bau, A. Benesi, *Science, 262,* 1993, 402; J. B. Lambert, S. Zhang, L. C. Stem, J. C. Huffman, *Science, 260,* 1993, 1917; G. A. Olah, G. Rasul, X. **Y.** Li, H. A. Buchholz, G. Sandford, G. K. S. Prakash, *Science, 263,* 1994, 983; Z. Xie, R. Bau, A. Benesi, *C.* A. Reed, *Organometallics, 14,* 1995, 3933.
- [7] For related compounds see: W. Wolfsberger, H. H. Pickel, H. Schmidbaur, *Z. Natuvforsch., 26b,* 1971,979; A. *S.* Shtepanek, **V.** A. Zasorina, I. N. Zhmurova, A. P. Martynyuk, *Zh. Obshch. Khim., 45,* 1975, 1012; A. P. Marchenko, G. N. Koidan, A. M. Pinchuk, A. V. Kursanov, *Zh. Obshch. Khim., 54,* 1984, 1774.
- L. D. Quin, J. G. Verkade: *Phosphoms-31 NMRSpectral Properties in Compound Characterization and Structural Analysis,* VCH Publishers, New York (1994).
- H. J. Cristau, *Chem. Rev., 94,* 1994, 1299.